The effect of material parameter values on the relation between the energy gap width and the scatterer symmetry in two-dimensional phononic crystals

نویسندگان

  • Izabela Śliwa
  • Maciej Krawczyk
چکیده

The phononic band structures of two-dimensional solid phononic crystals with different lattice and scatterer symmetry are studied numerically, with three types of lattice (square, triangular and rectangular) and four different scatterer shapes (circle, hexagon, square and rectangle) considered. XY and Z vibration modes are investigated separately. Two types of phononic crystal are considered: one composed of high-density rods embedded in a low-density matrix, the other of low-density rods in a high-density matrix. In the former case, lattice type and polarization being fixed, the broadest gaps are obtained when the symmetry of the rods corresponds to that of the lattice (the shape of a rod is identical with that of the first Brillouin zone); the largest gap width values are observed in triangular lattice-based crystals (compared to those based on square and rectangular lattices), the shape of the corresponding first Brillouin zone being closest to a circle. These rules do not apply to structures in which the density of the rod material is lower than that of the matrix. In this case, when the symmetry of the rods corresponds to that of the lattice, gaps either fail to appear at all, or are much narrower than in other configurations. The effect of other material parameter values (such as the longitudinal and transversal velocity values) on the considered relation proves much lesser. Submitted to: J. Phys. D: Appl. Phys. The effect of material parameter 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry

In this paper, the properties of the defect mode in the photonic band gap ofone-dimensional ternary photonic crystals containing high temperature superconductorlayer (SPCs) have been theoretically investigated. We considered the quasi-periodiclayered structures by choosing two order of ternary Thue-Morse structures with mirrorsymmetry. We investigated the transmission spectra of these structure...

متن کامل

Investigation tow of negative refraction characters in the three different 2D phononic crystals

In this paper, a two-dimensional phononic crystal comprising of steel rod in water is investigated. Three cross- sections for this rod are considered using finite element method (EFM). We plot the equifrequency surface of the first band, because of equifrequency surface convex around the edge of the first Brillouin Zone, we guess the negative effective phononic mass and so negative refraction. ...

متن کامل

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

متن کامل

Temperature Tunability of Dielectric/ Liquid Crystal / Dielectric Photonic Crystal Structures

Recently, photonic crystals doped with liquid crystal (LC) material havegained much research interest. In this article new ternary one-dimensional photoniccrystal introduced and studied. The liquid crystal layer of 5CB and 5PCH is sandwichedby two dielectric layers. For the first time, we use four structures SiO2/UCF35/CaF2,SiO2/5CB/CaF2, NFK51/UCF35/NPSK53 and NFK51/5CB/NPSK53. The effect ofte...

متن کامل

The generalization of structure factor for rods by polygon section in two-dimensional phononic crystals

The purpose of this paper is the generalization of structure factor for rods by polygon section in two dimensional phononic crystals. If we use the plane wave expansion method (PWE) for the propagation of acoustic waves in 2D phononic crystals, structure factor will be an important quantity. In order to confirm the obtained relations, we have calculated the band structure for XY and Z vibration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005